Edit page

CW High School
 AP Calculus B

1. Unit 5--Applications of Derivatives (25.00\%)

Learning Targets

1.1 I can locate absolute and local extrema, find critical points and apply the extreme value theorem to find maximum and minimum values of a function over a closed interval.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can locate absolute and local extrema, find critical points and apply the extreme value theorem to find maximum and minimum values of a function over a closed interval.
$\mathbf{3}$	Developing	I can find local and absolute extrema of functions analytically.
$\mathbf{2}$	Minimal	I can locate critical numbers analytically.
$\mathbf{1}$	No Evidence	No evidence shown.

1.2 I can apply the mean value theorem over any interval in a continuously differentiable function to find the point in that interval where the mean value theorem is satisfied or explain why the mean value theorem does not apply.

Learning Target	Descriptor	Definition
4	Proficient	I can apply the mean value theorem over any interval in a continuously differentiable function to find the point in that interval where the mean value theorem is satisfied or explain why the mean value theorem does not apply.
3	Developing	I can evaluate the endpoints of a function in a closed interval and compare their value to any critical points in the closed interval to state maximum and minimum values of the function in that interval.
2	Basic	I can locate a point where the derivative of a function is equal to the slope of the secant line in a closed interval.
1	Minimal	I can find the x and y coordinates where the derivative of a function is equal to a specific value.
0	No Evidence	No evidence shown.

1.3 I can use the second derivative test to locate points of inflection and discuss the concavity of a function.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient I can use the second derivative test to locate points of inflection and discuss the concavity of a function.	
$\mathbf{3}$	Developing I can evaluate a second derivative at a point to find the concavity of a function.	
2	Basic	I can find where the second derivative of a function equals zero, then find the point of inflection.

CW High School
 AP Calculus B

Learning Target	Descriptor	Definition
$\mathbf{1}$	Minimal	I can find the second derivative of a function.
$\mathbf{0}$	No Evidence	No evidence shown.

1.4 I can create interval tables and sign charts with first and second derivatives to connect the slope, concavity, critical points, increase or decreasing nature, and points of inflection to the graph of a function.

Learning Target	Descriptor	Definition
4	Proficient	I can create interval tables and sign charts with first and second derivatives to connect the slope, concavity, critical points, increase or decreasing nature, and points of inflection to the graph of a function.
3	Developing	I can use a position function to find the velocity and acceleration functions and describe the motion of a particle.
2	Basic	I can create a sign chart to analyze the concavity of a function by using the second derivative.
1	Minimal	I can create a sign chart to analyze the increasing or decreasing nature of the graph of a function using the first derivative.
0	No Evidence	No evidence shown.

2. Unit 6--Differentials (25.00\%)

Learning Targets

2.1 I can write a mathematical model and analyze it to predict the minimum and maximum values of function and interpret the results.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can write a mathematical model and analyze it to predict the minimum and maximum values of function and interpret the results.
$\mathbf{3}$	Developing	I can locate the maximum or minimum value of a optimization function using technology
$\mathbf{2}$	Minimal	I can write equations to descibe the different parts of an optimization problem.
$\mathbf{1}$	No Evidence	No evidence shown.

2.2 I can discuss the local linearity of a function and produce a linear model for the function, use the linear model to predict values close to that point, and apply the concavity of the function to explain if the estimate is high or low.

Learning Target Descriptor
Definition

CW High School
 AP Calculus B

3.2 I can find the distance and displacement of an object by analyzing the area under a velocity-time graph or from data and use correct signs, notations, and units to interpret the results.

CW High School
 AP Calculus B

	5 I can apply both parts of The Fundamental Tredfy o chidulo findthiogatile of an antiderivative and evaluate a definite integral.		
Edit page	Learning Target	Descriptor	Definition
	4	Proficient	I can apply both parts of The Fundamental Theorem of calculus to find the derivative of an antiderivative and evaluate a definite integral.
	3	Developing	I can apply the Fundamental Theorem of Calculus to find the derivative of an integral with a constant as its lower limit of integration.
	2	Basic	I can find zeros and utilize absolute values to find areas between the x-axis and a curve with areas below and above the axis.
	1	Minimal	I can find the area between a function and the x-axis over a closed interval using the Fundamental Theorem of Calculus.
	0	No Evidence	No evidence shown.

4. Unit 8--Slope Fields and Differential Equations (25.00\%)

Learning Targets

4.1 I can construct a slope field for a given differential equation both by hand and by using a grapher, then sketch an approximate graph of a function through a given point.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can construct a slope field for a given differential equation both by hand and by using a grapher, then sketch an approximate graph of a function through a given point.
$\mathbf{3}$	Basic	I can sketch a line segment at a point that represents the slope of a function at that point. line segments at those points.
$\mathbf{1}$	Minimal	I can evaluate a differential equation at a point to find the slope of the function at that point

4.2 I can use Euler's Method and local linearity to approximate the value of a function at a point given its derivative and nearby point, sketch the behavior of the function at that point, and utilize the concavity of the function to explain whether the

Learning Target	Descriptor	Definition
4	Proficient	I can use Euler's Method and local linearity to approximate the value of a function at a point given its derivative and nearby point, sketch the behavior of the function at that point, and utilize the concavity of the function to explain whether the
3	Developing	I can use the derivative of a differential equation to test the concavity of a function.
2	Basic	I can I can sketch the approximate graph of a function near a point by analyzing its change in x and y and plotting a new point.
1	Minimal	I can evaluate a differential equation at a point to find the change in y given a small change in x .
0	No Evidence	No evidence shown.

Edit page

Learning Target	Descriptor	Definition
4	Proficient	I can solve initial value and general solution differential equations by separating the variables and using substitution to find the constant.
3	Developing	I can substitute an intial condition into the antiderivative of a differential equation.
2	Basic	I can antidifferentiate both sides of a differential equation by separating the variables.
1	Minimal	I can separate the variables in a differential equation.
0	No Evidence	No evidence shown.

4.4 I can evaluate integrals where substitution is necessary.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can evaluate integrals where substitution is necessary.
$\mathbf{3}$	Developing	I can change the limits of integration when using substitution to evaluate a definite integral.
$\mathbf{1}$	Minimal can use substitution to evaluate the integral of a trigonometric function with a polynomial in the	
integrand.		
$\mathbf{0}$	I can use substitution to evaluate an integral where powers differ by one degree.	

4.5 I can use the law of exponential change to separate the variables and solve growth and decay problems.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can use the law of exponential change to separate the variables and solve growth and decay problems.
$\mathbf{3}$	Developing	I can evaluate a continuously compounding interest, bacteria, or heating and cooling law problem.
$\mathbf{2}$	Basic	I can utilize half-lives in finding a decay constant.
$\mathbf{1}$	No Evidence	No evidence shown.

Submitted on 10/29/2019 by Bill Munch

